

Ferrites in Renewable Energies: Solar Inverters

www.ferroxcube.com

Solar Inverters

- · Reliability and efficiency are critical parameters on inverter design
- · Optimum ferrite material selection for magnetic applications the design for cost saving, and performance improvement
- · Support and flexibility to design custom product to customer requirements

Formerly, a Philips Components company we now belong to the Yageo Group, one of the world's strongest suppliers of passive components. As a leading supplier of ferrite components, FERROXCUBE has manufacturing operations, sales offices, and customer service centers all over the world.

We supply one of the broadest ranges of highquality, innovative products and place strong emphasis on miniaturization of magnetic functions. Ferrite components and accessories from FERROXCUBE are used in a wide range of applications, from telecommunications and computing electronics through consumer electronic products to automotive.

Ferroxcube ferrites have achieved great penetration in renewable energies market thanks to its leadership in materials and shapes. The constant adaptation to the latest technologies is one of our main assets. Besides, we are working to offer outstanding solutions for the forthcoming development and expansion of renewable energy sources such as solar, wind power and smart grid.

Introduction

Enabling High-efficiency Renewable Energies

Power conversion from the generation source to the mains implies the use of different types of ferrites, especially in the case of solar inverters. Ferroxcube works to offer outstanding solutions for the forthcoming development and expansion of renewable energy installations such as solar and wind power, as well as hybrid technologies.

Ferroxcube ferrites have achieved great penetration in renewable energies market thanks to its leadership in materials and shapes. The constant adaption to the latest technologies is one of our main assets.

This application note shows what types of Ferroxcube materials and shapes are suitable for each part of the inverter, and highlights some of their features.

Requirements for Renewable Energy Applications

- · Reliability and efficiency are critical parameters in inverter design
- Optimum ferrite material selection for magnetic applications in the design for cost saving, and performance improvement
- Support and flexibility in designing customized product to fulfill customer requirements

Applications

Solar Inverter Application Matrix						
	Function	Material Grade	Preferred Core Shape	Characteristics		
String Inverter						
DC/DC boost	Boost inductor	3C95, 3C92, 3C90	Large E core Ferrite assembly	High saturation		
	Transformer	3C95, 3C92	Large E core Ferrite assembly	Low loss		
Inverter	Reactor	3C92, 3C90	Large E core Ferrite assembly	High saturation		
EMI filter	Common mode choke	3E10, 3E27 4S2	Large toroid (> 42 mm)	High impedance		
Maximum Power Point Tracker	Current sensor	3E10, 3E27	Gapped toroids, UU, custom	High perm., temp and B stable		
Micro-Inverter						
DC/DC boost	Boost inductor	3C95, 3C92, 3C90, 3F36	Planar E, PQ, ETD	High saturation		
	Transformer	3C95, 3C92, 3F36	Planar E, PQ, RM	Low loss		
Inverter	Reactor	3C92, 3C90	Planar E, PQ, RM	High saturation		
EMI filter	Common mode choke	3E10, 3E27, 4S2	Mid size toroids (14 to 25 mm)	High impedance		

Ferrites in String Inverter

String inverters collect DC power from several solar panels (string of panels) and convert it to AC when transferring it to the grid. These inverters usually have the capability to drive several strings, adjusting the optimal conditions for each of the strings. The handling power varies from a few kilowatts (in domestic installations) to several hundreds on large scale plants.

There are several ferrite functions within the inverter: power conversion, EMI filtering and current sensing. The inverter can be split in 4 units:

• DC/DC converter :

The DC/DC converter boosts the panel voltage up to a stable level high enough to let the inverter unit generate AC mains voltage. Preferred materials are 3C92 due to its high saturation flux (460 mT at 100°C), 3C95 with low loss over a wide temperature range and the cost competitive 3C90. Depending on the power, the shape can be a large E core, but also large assemblies with a distributed gap. In case galvanic isolation is needed, it is possible to implement a transformer.

• Inverter :

The inverter converts the DC power coming from the DC/DC boost to AC mains level voltage. An inductive reactor is used to smooth the wave generated by the switches. Again, a distributed airgap core made out of 3C92 with its high saturation is the preferred solution.

• EMI filtering :

A common mode choke filters the line and neutral wire to supply a clean signal to the grid. This CMC consists of a current compensated magnetic circuit, in which the primary and the secondary are the line and neutral wire respectively. Optimal shapes for this function are toroids or any other closed magnetic circuit (without a gap). Feroxcube offers a wide range of toroid sizes. High permeability materials (3E10, 3E27) are optimal for EMI suppression at low frequency where the Electromagnetic

Compatibility (EMC) regulations are more stringent. High frequency (up to 300 MHz) noise can be suppressed with 4S2 cores.

Typical shape starts at 42 mm diameter (for domestic inverters) growing to large toroids which can be even stacked in the high power systems.

• Maximum Power Point Tracker:

The inverter adjusts continuously the working conditions of the DC/DC converter in such a way that the panels supply the maximum power. This is accomplished measuring the input and output current of the system. Hall effect sensors mounted on gapped ferrite cores provide an accurate and reliable current measurement. Using a bias coil and a compensation coil the current sensor gets its maximum accuracy, as linearity and thermal drifts are almost compensated.

Ferrites in Micro-inverters

Micro-inverters are installed in each panel to generate the maximum power from each of them. AC can be generated in the micro-inverter, or in a high power system for the complete installation. But in any case, basic operation of the unit is similar to what was described for string inverters.

Power handling is in the range of 300 watts. This implies:

 Higher switching frequencies are possible.
Preferred materials will be 3C95 (<400 kHz) and 3F36 (>400 kHz) due to their optimal performance under a wide temperature range.

• Core size is smaller because of the lower power, but also because of the higher frequency. Typical sizes will be PQ32 or planar E38, but size of the core depends strongly on the switching frequency.

EMI suppression requires smaller toroid sizes than in string inverter. Commonly 14 mm to 25 mm toroids are optimal.

Preferred Materials

Power conversion materials: Low frequency

- Low frequency: <300 kHz
- Thermal stable: 3C95
- Optimized for 100C: 3C98
- High saturation: 3C92
- Cost effective: 3C90

Power conversion materials: High frequency

- High frequency: >300 kHz
- Improved temperature performance

Symbol	Conditions	Value				Unit
		3C90	3C92	3C95	3C98	
μi	25°C ,10 kHz ,0.25 mT	2300 ±20%	1500 ±20%	3000 ±20%	2500 ±20%	
μα	100°C, 25 kHz, 200 mT	≈ 5500	≈ 5000	≈ 5000	≈ 5500	
Bsat	25°C ,10 kHz ,1.2 kA/m	≈ 470	≈ 540	≈ 530	≈ 530	mT
	10°C ,10 kHz ,1.2 kA/m	≈ 380	≈ 460	≈ 410	≈ 440	
Pv	100°C, 100 kHz , 100 mT	≈ 80	≈ 50	≈ 40	≈ 35	kw/m³
	100°C, 100 kHz , 200 mT	≈ 450	≈ 350	≈ 290	≈ 250	
ρ	25°C, DC	≈ 5	≈ 5	≈ 5	≈ 8	Ωm
T _c		≥ 220	≥ 280	≥215	≥ 230	°C
Density		≈ 4800	≈ 4800	≈ 4800	≈ 4850	kg/m³

Symbol	Conditions	Value	Unit	
		3F36		
μi	25°C ,10 kHz ,0.25 mT	1600 ±20%		
μα	100°C, 25 kHz, 200 mT	≈ 2400		
Bsat	25°C ,10 kHz ,1.2 kA/m	≈ 520	mT	
	10°C ,10 kHz ,1.2 kA/m	≈ 420		
P _v	100°C, 500 kHz , 50 mT	≈ 90	kw/m³	
	25°C, 500 kHz , 100 mT			
	100°C, 500 kHz , 100 mT	≈ 700		
ρ	25°C, DC	≈ 8	Ωm	
T _c		≥ 230	°C	
Density		≈ 4750	kg/m³	

EMI suppression materials

- 4S2F: High frequency EMI suppression
- 3E27: High Tc, low frequency EMI suppression
- 3E10: Low frequency, high impedance EMI suppression

Symbol	Conditions		Value		Unit
		3E10	3E27	4S2	
μi	25 °C; ≤10 kHz, 0.25 mT	10000±20%	6000±20%	≈ 850	
Bsat	25 °C; 10 kHz, 1200 A/m	≈ 460	≈ 430	≈ 340	mT
	100 °C; 10 kHz, 1200 A/m	≈ 270	≈ 270	≈ 230	
tanδ/µi	25 °C; 30 kHz; 0.25 mT	≤ 5 x 10 ⁻⁶			
	25 °C; 100 kHz; 0.25 mT	≤ 20 x 10 ⁻⁶			
η _в	25 °C; 10 kHz; 1.5 to 3 mT	≤ 0.5 x 10 ⁻³	≤ 5 x 10 ⁻⁶		T-1
ρ	DC;25 °C	≈ 0.5	≈ 0.5	≈ 10 ⁵	Ωm
T _c		≥130	≥150	≥125	°C
Density		≈ 5000	≈ 4800	≈ 5000	kg/m³

FERROXCUBE - A GLOBAL COMPANY

HQ

Taipei, Taiwan Ferroxcube Taiwan Tel: +886 963 767 858 Fax: +886 2 6629 9999 Mail: wiki.hsiung@ferroxcube.com

ASIA

Dongguan, China Ferroxcube China Tel: +86 769 8681 8777 Fax: +86 769 8733 9561 Mail: King.lee@ferroxcube.com

Suzhou, China Ferroxcube China Tel: +86 512 6841 2350 Ext.203 Fax: +86 512 6841 2356 Mail: Eric.Xu@ferroxcube.com

Singapore Ferroxcube South Asia Tel : +65 6412 0875 Fax : +65 6412 0808 Mail: adrian.toh.wee.yong@ferro xcube.com

Europe

Hamburg, Germany Ferroxcube Germany Tel: +49 40 883 66 020 Fax: +49 40 883 66 022 Mail: saleseurope@ferroxcube.com

Lissone, (MB), Italy Ferroxcube Italy Tel: +39 0392 143 599 Fax: +39 0392 459 472 Mail: saleseurope@ferroxcube.com

North America

El Paso (TX), USA Tel: +1 915 599 2328 Fax: +1 915 599 2555 Mail: juan.carlos.gardea@ferroxcube.com

San Diego (CA), USA Tel: +1 619 207 0061 Fax: +1 619 207 0062 Mail: joel.salas@ferroxcube.com

Vancouver (WA), USA Tel:+1 915 599 2616 Mail: dan.pizarro@ferroxcube.com

Pittsburgh (PA), USA Tel: +1 412 226 0048 Mail: michael.horgan@ferroxcube.com

Rochester (NY), USA Tel:+I 585 364-3395 Mail: owen.davies@ferroxcube.com

> For a complete listing of all Ferroxcube sales offices, distributors and representatives, please visit "contact us" at

www.ferroxcube.cor

Ferroxcube International Holding B.V. 2014 Winghts are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any

uotation or contract, is believed to be accurate and reliable and may be nanged without notice.

No lability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in Poland

Date of release: Mar 2022

